当前位置:首页 > 公司动态
企业数据治理面临的挑战有哪些
  • 发表时间:2019-11-20 点击数:209
  • 来源:未知

        每年随着数据量的增长,大数据平台需要投资扩容,但大量的存量应用依赖的数据也在同步增长,因此也需要扩容,当然这份冗余的数据会越来越大。

   因此,所以能实施一次数据治理,往往是数据的问题已经在公司层面显性化的暴露出来,在降本增效这个大背景下,很多公司是有数据治理的驱动力的,毕竟节省的是真金白银。

   现实中,我们大量的数据治理活动都是小组级、部门级的,跟数据产品,数据变现,智慧运营这些工作相比,重要程度实际是偏低的。

   由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理在现在得以被重视的重要原因。在业务IT化的过程中,企业通过第三方厂商、自研等方式构建多种数据系统,采用多种系统中的数据化治理,是实现数据效能、数据驱动业务的关键步骤。

   早期,企业用信息技术去构建业务流,而现在,我们试图用信息技术,特别是互联网行业中的一些大数据处理以及分布式处理技术构建数据流,但在构建过程中,过多强调技术本身而忽视了对数据的治理。

   数据治理是整体性问题,并非仅是技术问题,市面上数不胜数的商业组件可以解决如何对数据进行存储、查询等问题,但是在实际的业务情况下对于数据治理这样一个系统性工程,目前却并无现成的产品或技术可以直接解决。

  构建数据流的过程,很大意义上是为了解决分布在IT系统里各个不同子系统之间的数据孤岛问题,用一条完整的数据流将不同子系统之间的数据孤岛打通,同时应用于不同的应用场景,这个打通的过程,就是某种意义上的数据治理。这也反映了我之前尤为推崇的一个观点——构建数据仓库本身就是一个数据治理的过程。

  数据的本质,有如下两个定义,第一“信息是用来消除不确定性的”,第二“大数据的本质,就是用信息来消除不确定性”。同样,对于数据驱动在业务决策和产品智能两大方面的应用,也都将建立在数据治理的基础上才有意义。