一是由过程因果思维转变为数据相关思维。以往,常用的生态环境机理模型强调过程模拟,用公式或语言描述准确的因果关系,在一定的假设条件下,生态环境的变化和预测是规律的。到了大数据时代,过程因果思维的局限性不断显现,并非所有的生态环境分析都可以用因果关系描述,且寻找因果关系已变得越来越困难。因此,应使用大数据思维来思考问题解决问题,以数据为核心,通过数据相关性分析获取新知识,打破过程因果思维的局限,不再受限于各种假设,发现以前不曾发现的数据关系,提升生态环境预测预警能力。
二是由数据抽样思维转变为数据全量思维。在物联网技术快速发展之前,我们不具有采集海量生态环境监测数据的能力,且以过程因果思维思考问题时,往往希望采用数据抽样的方法,用小量的数据证实可能发现的假设规律,这样得到的结论会或多或少具有水分,真实性受到一定的影响。因此,在我们具有采集海量生态环境监测数据的能力后,基于数据全量思维,相关分析的数据量越大,包含的信息越全面,真实性越大。
三是由数据精准思维转变为数据高效思维。在大数据时代之前,生态环境数据采集的基本要求是减少数据错误,保证数据质量。在数据采集的时候,对精确度的要求较高,时间效率低。但是,生态环境状况不断变化,需要更高效的数据服务于生态环境的分析,大数据技术能提高生态环境数据采集的效率、分析的速度,由数据精准思维转变为数据高效思维,可以让政府、企业的生态环境相关决策更科学,让社会对生态环境状况的了解更及时。
此外,在思维转变的同时,还需要构建以下的逻辑链。
一是生态环境大数据的应用要区分行为数据和状态数据。大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,但基于数据相关思维,需要将生态环境大数据分为行为数据和状态数据。行为数据主要包括企业和市政排污、城市和农业面源、生态系统类型变化、突发环境事件、发展规划、工程建设、生态环境治理措施等,行为数据的分析和筛选是生态环境大数据的主要着力点。状态数据主要包括各类生态环境质量表征数据。构建行为数据和状态数据之间的相关性,既可以实现生态环境的预警预测,也可以锁定异常的生态环境行为。
二是生态环境大数据的应用要实现智能化决策。大数据为生态环境的智能化决策提供了数据支撑,如果没有了大数据,智能化决策体系将成为空壳。反之,如果生态环境大数据的应用未实现智能化决策,则说明没有达到更深层次的数据分析,需要人为的影响和参与才能实现判断与决策。当然,现有生态环境大数据的应用是个循序渐进的过程,离全面实现智能化决策有一定的差距。笔者认为,需要在生态环境大数据的应用中多思考如何实现智能化决策。如暂未实现,那主要的原因是什么?下一步如何改进?通过深入分析,将实现智能化决策作为生态环境大数据的应用目标。
三是生态环境大数据的应用要能获取社会效益和经济效益。应用价值高是大数据的主要特征之一,无论政府主导、企业主导还是社会组织主导的生态环境大数据应用,获取社会效益和经济效益是最重要的驱动力。没有效益的生态环境大数据应用,既脱离了大数据的本质,也无法有效开展。