当前位置:首页 > 公司动态
人工智能技术是基于大数据吃饭的?
  • 发表时间:2019-05-23 点击数:158
  • 来源:未知

   我们现在已经迈入了AI与机器人逐渐取代人类工作的年代,在不知不觉间,AI的相关技术已经开始渗透每个人生活的角落,从GoogleFacebook依照兴趣投放的广告、可以帮你找资料设定日历的语音助理Siri,背后都含有AI的概念与技术。未来的生活无论是投资、交通、医疗、学习、生产,将无处不是AI的踪影,这个技术也将彻底改变人们的生活模式。

      QQ截图20190523153433

  是什么让AI科幻科技”?

  AI其实是个庞大而复杂的概念,但大都奠基于一项基础的关键技术,这个技术叫做机器学习Machine Learning”

  机器学习技术,就是让机械拥有自主学习的能力,说起来很简单,但在1950年代技术萌芽期间,演算法和硬体条件都不够成熟,是直到近年来日益优异的演算法,与强劲的硬体运算能力,才让机器学习的能力有突破性进展,而其中进展最为快速的一项关键技术,就是大家最耳熟能详的──深度学习

  我们来看看这个数据:2015年机器学习的周边市场规模约3.6亿美元,至2020年预估将突破29亿美元,并在AI整体市场的50亿美元中占了约六成比重,可以说机器学习的技术突破,就是AI市场发展的原动力。

  既然机器学习重要,那么它究竟是什么?为何能进展神速?

  大数据提高了深度学习精准度

  演算法及硬件条件的大幅跃进提供了 机器学习 发展的优良条件,再加上数字化联网的蓬勃下带来的大数据,便引爆了科技大厂争相投入深度学习技术的浪潮。目前不管是NVIDIA这类的芯片商,或擅长演算法的GoogleFacebook等软件商,最常提到从事的机器学习的主流技术,就是深度学习。

  举个例子描述深度学习如何进行。想像一下,要让一台搭载深度学习能力的车辆进行自动驾驶,面对陌生的路线、随时有行人冲出马路的危险路况,机器怎么判断?透过深度学习,你可先一次提供机器海量的数据资讯,包含路标、号志、路树、行人、等,让它学会辨识环境中的物体为何,学会了,便有助于它在行进过程中快速而精准地避开障碍、找出最佳路径,并顺利抵达目的地。只要数据越丰富完整,机器就越能够提高一切辨识的精准度,以加强判断能力。

  这么说来,要能让AI深度学习发展思考能力,很大程度是依赖大数据所赐,不过,这时候我们就会面临一个问题:没有大数据,深度学习就毫无用武之地了吗?

  小数据的机器学习方案也蓄势待发

  大数据带给深度学习强而有力的判断能力,但其实机器若要做到学习这件事,深度学习并不是唯一方法。

  回到自动驾驶的例子,倘若这次我们先不将海量的数据提供给机器,而是只告诉他目的地禁止碰撞两项指令,然后任凭他不断的Trial & Error,在失败中汲取经验以达到学习的效果,最终也能抵达目的地(前提当然是没有遭遇严重车祸影响行进能力)。这样在初始阶段不仰赖大数据的学习方式,可以归类为强化学习

  强化学习的方法能补足机器在突发状况下的应变能力,AlphaGO的开发商DeepMind也深谙这项方法的优点,因此让AlphaGO也借着深度学习与强化学习的组合,在对手下出意料之外的棋步时,随即建立新的经验,以做为未来在相同局势下能克敌制胜的判断依据。

  为什么我们需要小数据AI培养方案?

  事实上,获取足够大量的数据就是极耗成本的一件事,此外,有些数据如罕见疾病的病历、症状等本身就具稀有性,因此像是强化学习等低数据依赖度机器学习方案逐渐开始受到青睐,许多公司与研究机构也以此作为研发的努力方向。日前飔拓公司就发布了其最新的研究成果AInspir深度学习平台,表示其可仅用很少量的数据训练机器学习,就达到媲美进行深度学习后的精准辨识能力,成功吸引市场关注。

  除了一般仰赖大数据的深度学习外,其他可降低数据量依赖度的机器学习方案正不断酝酿中。在不远的未来,我们开车出门只要安稳的在后座休息,不须担心安全与塞车问题,AI自然会帮我们找到最佳路径;弹指轻点,手机便会帮我们挑选出最适合的购物选择;还可能有贴身的虚拟健康顾问可咨询,并随时告知我们每天的饮食是否均衡、甚至帮我们设计健康菜单。

  AI深入生活的程度,说不定会比我们想像中来得更快。